- 3. Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) Naturally Occurring Acetylenes. Academic Press, London.
- 4. Heywood, V. H. (1971) The Biology and Chemistry of the

Umbelliferae. Academic Press, London.

 Etse, J. T. and Waterman, P. G. (1986) Phytochemistry 25, 1903.

Phytochemistry, Vol. 26, No. 5, pp. 1529-1530, 1987. Printed in Great Britain.

0031-9422/87 \$3.00 + 0.00 © 1987 Pergamon Journals Ltd.

(+)-ISOBICYCLOGERMACRENAL FROM ARISTOLOCHIA MANSHURIENSIS

GERHARD RÜCKER, RALF MAYER, HELMUT WIEDENFELD, BO S. CHUNG* and ANDREA GÜLLMANN

Pharmazeutisches Institut, Rheinische Friedrich Wilhelms-Universität, Kreuzbergweg 26, 5300 Bonn, F.R.G.; *Seoul National University, Seoul, Korea

(Revised received 11 November 1986)

Key Word Index—Aristolochia manshuriensis; Aristolochiaceae; (+)-isobicyclogermacrenal.

Abstract—The previously unknown (+)-isobicyclogermacrenal was isolated from Aristolochia manshuriensis. Its structure was elucidated by spectroscopic means and X-ray analysis.

By separation of the petrol-ether extract (1:1) of the stems of Aristolochia manshuriensis Komarov, a crystal-line substance (1) with mp 54-56° was isolated [1]. The IR, 1 H NMR, 13 C NMR and mass spectral data are identical with those of (-)-isobicyclogermacrenal (2), which was isolated from the liverwort Lepidozia vitrea as an oil [2]. Reduction of 1 affords isobicyclogermacrenol (3) as does 2. The optical rotation of 1 is positive; probably it is (+)-isobicyclogermacrenal. However, the rotation value of 1 is twice as high as that of 2 (1: $[\alpha]_D^{20} + 341^\circ$ (c = 0.7, CHCl₃), 2: $[\alpha]_D^{20} - 168^\circ$ (c = 1; CHCl₃ [2]).

X-Ray diffraction analysis (Fig.1) indicates that 1 must be the (+)-(6S,7R)-enantiomer of (-)-(6R,7S)-6,11cyclogermacra-1(10)E,4E-dien-14-al, (2) [2]. It is interesting to note that in 1 and 3 [2] the C=C double bonds are strongly elongated [1.343(6) and 1.353(6)Å], whereas the C-C single bonds C5-C6 (1.451(6) A) and C4-C15 (1.451 (6) Å) are likely to be shortened. Furthermore the bonds C1-C2, C3-C4, C9-C10 and C7-C8 are somewhat shortened. Least squares planes calculations for molecule fragments reveal that the planes formed by C5-C6-C7-C8 and C6-C7-C11 intersect an angle of 113°. As expected, the methyl groups C12 and C13 intersect an angle of nearly 90° with the plane formed by atoms C6-C7-C11. The double bonds have identical configurations in 1 and 3; C1=C10 is established as trans and C4=C5 as cis.

The 10-membered macro-cyclus (C1-C10) shows nearly the same configuration in both molecules. A list of the torsion angles is given in Table 1. Compounds 1 and 3

only differ in the conformation of the cyclopropane ring (C6-C7-C10) which results in the enantiomeric stereochemistry at atoms C6 and C7.

Crystal data

Compound 1 crystallized orthorhombically with the lattice constants: a = 8.677(3) Å, b = 11.717(4) Å, c = 13.704(5) Å in the space group $p2_12_12_1$, The cell volume was calculated as 1393.3 (8) Å³, the number of formula units in the elementary cell amounted to Z = 4,

Table 1. Torsion angles (°)

	3 [2]	1
C10-C1-C2-C3	94.5	85.3
C2-C1-C10-C15	9.2	9.5
C1-C2-C3-C4	-61.2	-61.6
C2-C3-C4-C5	87.4	89.2
C3-C4-C5-C6	2.3	8.6
C4-C5-C6-C7	-113.4	-117.8
C5-C6-C7-C8	4.0	5.3
C6-C7-C8-C9	90.2	93.3
C7C8C9C10	-69.9	- 70.6
C8-C9-C10-C1	89.5	88.4
C9-C10-C1-C2	-163.8	- 163.5

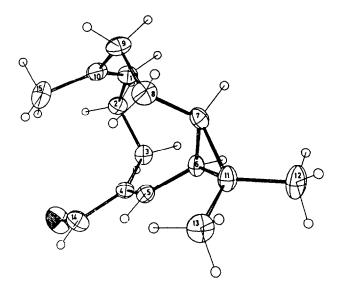
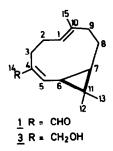



Fig. 1. Molecular structure of (+)-isobicyclogermacrenal (1).

so that the density was computed to 1.04 g/cm^3 . In the region $3^\circ < 2\theta < 54^\circ 2208$ reflections (2065 independant reflections) were measured (graphite monochromated MoK-radiation: 0.7107 Å) on an automatic four-circle diffractometer (Nicolet R3m). After correcting (Lorentz and polarisation effects) 1090 structure factors were used for structure elucidation $(F > 4\sigma(F))$. The structure was calculated by Direct Methods (SHELXTL) using full matrix least squares calculations (non-hydrogens unisotropically). The hydrogens were refined isotropically as ideal tetrahedrons. After the final refinement (172 parameters), the R value converged to $0.067 (R_w; 0.051 \text{ with } W = 1/\sigma^2)$. Scattering factors were used for uncharged atoms (International Tables). Full crystal data of 1 are deposited to the Cambridge Crystallographic Data

Centre, University, Chemical Laboratory, Lensfield Road, Cambridge, C82 1EW, U.K.

EXPERIMENTAL

Plant material. The stems of Aristolochia manshuriensis were collected in July 1983 in Dae-wha, Kangwon-do province, South Korea. A voucher specimen is deposited at the College of Pharmacy, Seoul, National University.

Extraction and isolation of (+)-(6S,7R)-6,11-bicyclogermacra-1(10)E,4E-dien-14-al (1). The dried, powdered stems were repeatedly macerated with petrol-Et₂O (1:1). Acids were removed by extraction with 5% Na₂CO₃ soln. The oily residue of the neutral fraction was separated by CC (silica gel 60, methylene chloride). Fractions with R_f 0.45-0.55 (silica gel 60 (Merck), CH₂Cl₂) were separated on silica gel 60 with n-hexane-EtOAc (9:1). Fractions of this separation with R_f 0.4 (silica gel 60, hexane-EtOAc, 9:1) afforded white crystalls, mp 54-56° (n-hexane); $[\alpha]_D^{2O} + 341^\circ$ (c = 0.7; CHCl₃). IR, ¹H NMR, ¹³C NMR, MS identical with 2 [2].

REFERENCES

- Güllmann, A. (1986) Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn.
- Matsuo, A., Nozaki, H., Kubota, N., Uto, S. and Nakayama, M. (1984) J. Chem. Soc. Perkin Trans. 1 203.